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Abstract--The flow field associated with the centrifugal separation of  non-colloidal polydispersed (in 
particular, bidispersed) suspensions is considered. The "mixture" model framework is developed, and 
some indicative solutions are obtained and discussed. It is shown that the treatment of rotating 
polydispersions, in particular for non-small values of  particle Taylor number, encounters idiosyncratic 
physical and mathematical complications. Therefore, the state of knowledge in the centrifugal case lags 
much behind the gravity analog. 
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1. I N T R O D U C T I O N  

We consider the centrifugal separation of a non-colloidal suspension. The obvious analog is the 
gravity settling process. 

Much progress has been made in the last 15 years in the understanding of flow of suspensions 
in the gravity field, and many of these novel advances have counterpart studies for the centrifugal 
forcing. However, the almost parallel recent development of knowledge on gravity and centrifugally 
driven flow of  suspensions concerns only monodispersed particles (see Ungarish 1993, where 
pertinent references are given). 

As to polydispersions--i.e, suspensions of  particles which differ significantly in size or density--  
there still are major gaps of knowledge between gravity and centrifugal configurations. To 
emphasize this gap, we briefly list some fundamental closely-investigated (both experimentally and 
theoretically) systems of polydispersions in the gravity field: 

(1) Straight container, suspension of particles of different densities and/or sizes with 
a total volume fraction e < 0.16 (Smith 1966; Greenspan & Ungarish 1982 and 
others). In this case distinct sectors of  smooth one-dimensional flow appear; in 
each sector the volume fractions el are constant. The theory is simple, straight- 
forward and powerful. 

(2) Straight container, mixture of light and heavy particles with e > 0.16 (approxi- 
mately) (Fessas & Weiland 1984; Batchelor & Van Rensburg 1986 and others). 
In this case a strong instability appears in the initial stage, which causes clear 
fingering and lateral segregation. 

(3) Straight container, particles of  the same density PD but different sizes suspended 
in a fluid of  density Pc, e < 0.16, and the suspension is overlain by a clear fluid 
whose density is Pu, so that PD > Pu > Pc (Huppert et al. 1991). In this case the 
flow is one-dimensional, like in the basic configuration (l), but the sharp upper 
interface descends faster than in the absence of Pu layer. 

(4) Inclined container, suspension with e < 0.16 (Davis et al. 1982; Schaflinger 1985; 
Law et al. 1988 and others). The flow is smooth and displays distinct zones with 
clear interfaces between them; extensions of the PNK theory were obtained. 

On the other hand, the corresponding state of the art in rotating polydispersions is deficient: to 
the best of  our knowledge, there is only one published work on rotating polydispersions, a 
theoretical investigation by Ungarish & Greenspan (1984). The analysis considered the (infinitely) 
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"long" rotating cylinder, in which a suspension of particles of the same density but two different 
sizes separates from an initial state of solid-body rotation. The solution was obtained via the 
"two-fluid" model, with drag and effective viscosity assumed to be of  Stokesian type. 

It is well known that the flow field of a suspension under centrifugal separation is more complex 
than in gravity settling, mainly because: (a) the force field is space dependent therefore e must 
change with time (the "squeezing effect"); and (b) Coriolis accelerations introduce special and 
counterintuitive effects. The abovementioned analysis points out that when polydispersions are 
concerned some additional intrinsic differences between the centrifugal and gravity cases appear, 
which complicate the analysis in the former one, in particular: 

• The volume fraction in the left-behind monodispersed mixture sector is both time 
and space dependent. Therefore, the analytical treatments and relevant experimen- 
tation are bound to be difficult. 

• The behavior expected due to the gravity-based "intuition" may change drastically 
when the Taylor numbers of the particles, //j, are not small. In particular, larger 
particles may settle slower than the smaller ones. There is presently no direct 
experimental verification of this trend. The reliability of  the formulation for larger 
[~ is problematic. 

The results of Ungarish & Greenspan (1984) can be viewed as the beginning of the centrifugal 
counterpart  of the basic gravity configuration (1). However, for more complicated cases (i.e. finite 
cylinder, more components,  numerical simulation, stability analysis, spin-up features) it seems 
necesary to use the more straightforward "mixture model" formulation. The present work, 
following some preliminary promising results in a simpler configuration (Ungarish 1995), attempts 
the formulation and solution of polydispersed (in particular, bidispersed) rotating flow problems 
in the framework of the "mixture model". Essential in this model is the "postulate" for a closure 
formula for the relative velocities, VR,, and we shall see that here, again, complications (with no 
counterparts in gravity) show up. However, under simplifying assumptions a quite straightforward 
procedure is established and illuminating solutions for centrifugal separation in "long" and finite 
cylinders are obtained. 

2. G O V E R N I N G  E Q U A T I O N S  

2.1. The  m a i n  ba lances  

Some essential kinematic relationships between the volume fractions, e,, densities, p, velocities, 
v, and volume flux, j, are given in appendix A. Here we use the "mixture model" formulation. 
Subscripts D and C denote the dispersed and continuous "phases",  mixture variables bear no 
subscript; v R is the relative velocity of  phase D measured from phase C, The additional subscript 
j denotes the particles of  type j ;  this index assumes values 1 and 2 in a bidispersion. For definiteness 
we denote by 1 the larger and/or heavier particle in the bidispersion. Each component has a 
constant density, i.e. Pc and Pl~i are constants. 

The essential parameters of  the flows under consideration are the density coefficient, 

~, = ( i~ j  - Pc ) /Pc ,  [2.1] 

and the (modified) Taylor number, which measures the ratio of  Coriolis to viscous forces on the 
dispersed particle, 

2 ~  
~' : 9 v0 a~, [2.2] 

where a is the particle radius, v0 is the kinematic viscosity of the pure continuous fluid, and ~ is 
the angular velocity of the centrifuge. Typically, (/and/~i are small, but for larger particles in rapid 
centrifuges non-small values of [~j can appear. 

In general, we use a system rotating with constant £~ and subject to a constant gravity g. The 
body force per unit mass is 

f = g - ~ x ( ~ x  r ) = - - V B ,  [2.3] 
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where 

B = - g . r - ½ [ ~  x r[ 2. [2.4] 

In dealing specifically with centrifugal separations we shall use a cylindrical coordinate system r, 
0, z where the velocity vector has components u, v, w and ~ -- f~£, and assume that g ~ ~"~2ro, where 
ro is the outer radius of  the container. 

The major equations for the mixture fluid are volume continuity, 

V .j = 0, [2.51 

and momentum balance 

c3tPV + V- pvv + 212 x v = - V p  + (p - p c ) f +  V" z + V. r dig. [2.6] 

The continuity ("diffusion") equations for the dispersed phases are 

~ej 
~-~- + V- givt)j = 0, j = 1, 2. [2.7] 

Here p is the reduced pressure (conventional pressure plus Pc B), r is the generalized viscous stress 
and 

z d~ff = - + _ [2.8] 
j = l  j = l  = 

is the diffusion stress, see appendix B. 
The system [2.5]-[2.8] is supplemented by the kinematic relationships of  appendix A. To close 

it, constitutive relationships for the stress term V- z and for the relative velocities, VR. and %2, are 
required, Here we assume that the mixture is Newtonian-like, with a modified, effective viscosity, 
simply correlated to the viscosity of  the pure suspending fluid, as specified later. In the problems 
we wish to investigate a minor contribution of V • ~ is anticipated, hence the accuracy of that 
assumption is not critical. 

2.2. Relative velocity closure 

The closure relationships for v~j are essential because the separation process is obviously driven 
by the interphase relative velocities. In the classic binary gas theory the corresponding closures are 
provided by Fick's law, but here the "diffusion" (relative motion) of  the particles in the embedding 
fluid is dominated by macroscopic (not molecular) effects. 

The task is to model this motion in a simplified manner so that VRj (actually, an approximation 
to it) can be extracted by some elementary manipulations. To this end, it is recalled that in many 
cases of  interest, when the major driving force is the gravity and/or centrifugal buoyancy on the 
small dispersed particles, the resulting global flow can be considered a small perturbation on some 
basic, hydrostatic (or geostrophic) inviscid state of  the mixture bulk. To be more specific, in such 
cases, under a relevant scaling which renders the buoyancy term O(!) ,  the Reynolds, the 
Brownian-diffusion-Peclet and the Grashof  numbers are large, and the Rossby number is small, 
see Ungarish (1993, sections 2.5.4, 2.5.1). Consequently, in the momentum equations the convective 
accelerations of  the particles and mixture and the stresses in the mixture can be assumed much 
smaller than the buoyancy (body force) terms, which yields the leading balances 

p 2 ~  × v - -  - V p  + (p - p c ) f ;  [2.9] 

po/2~[~ × VDj = - V p  + (PDj - -  pc  ) f  + d i, [2.10] 

where dj is the interfacial "drif t"  (drag plus lift) hydrodynamic force per unit volume on the particle 
of  type j, assumed to be a known function of VRi- We eliminate the pressure and use [AI] [A3] to 
obtain 

2K~ PDiVDJ -- p V __ (C/-- ~c)f + d!, [2.11 ] 
Pc Pc 
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where, according to the kinematic relationships [A9]-[AI0], for j = 1, 

PDIVDI -- pv = 1 + C~ [(1 --el + C2e2)VR~ -- ~2(1 +C~)VR2] + (Cl -- Ce)V, [2.12] 
PC 1 + C~ 

and similarly for j = 2. 
The system [2.11]-[2.12], subject to a given d i= dj(VR/), can be used to calculate vm and VR2, as 

follows. 
The simplest and widely employed choice for dj is the Stokes drag incorporating the effective 

viscosity correction, 

- -25VRj'kt(e), with p ( s ) =  1 -  " [2.13] 
Pc 2 uj 

see Ishii & Zuber (1979), where eM is the maximal packing fraction of the dispersed particles (other 
similar semi-empirical correlations for/~(s) are often employed). 

In pure gravity settling we take f~ = 0 and f =  g; [2.11]-[2.13] readily give 

VRj = ( 1 - -  Ce/Cj)~2 g 1 7,0 f ,  [2. 14] 

where ~ = g/g. The hindrance function (1 -ec/cj)/l~(e) reduces to the usual monodispersion form 
when the particles differ in size but have the same density, c~ = c2 = ~, because in this case the 
hydrostatic pressure in the mixture depends only on s = e~ + e2, not on the particular values of e~ 
and e2. Equation [2.14] is immediately applicable to more than two dispersed components, e.g. the 
flow fields calculated by Huppert et al. (1991) correspond to [2.14] with c = G and/~(e,) = (1 - e) ~. 
The closure [2.14] has several convenient features: VRj is in the direction of the driving force g; VR~ 
and VR: are formally uncoupled; the extension to any number of components is straightforward; 
v~j is space-dependent via ~, and hence consistent with the existence of regions of constant e~ in 
the flow-field; in regions of constant ej, the term z a~n is also constant (see [2.8]) hence V. T diff 

vanishes. These properties make [2.14] an extremely facilitating "postulate" for the analysis of 
polydispersions in the gravity field. 

However, in pure centrifugal settling the choice [2.13] leads to less convenient outcomes. One 
major conceptual difficulty is the applicability of [2.13] in situations where the ratio Coriolis over 
Stokes forces on the particle is not extremely small, as discussed later. Assuming that [2.13] can 
be used when ~ ¢ 0  and f = - ~  x (f~ x r ) =  ~'~2rt: w e  attempt to extract vm and VR2 from 
[2.11]--[2.13]. Recalling the definition [2.2] of the Taylor number of the particle of type j we obtain 
the two vector equations 

1 1 + C~ ~ x [OqkVRi--ekVRk q-bjv] ~ q /  = - - -  [c/fljf2r]f VR; + 2flJ/~(e) 1 + c s -  

and k = 2, and for j = 2 and k = 1), where 

~ j , = l - - s / + C ,  ek; Ck=ek(l+ck);  

b j = 0 ( l  ef)  l + c ~  
I + q  

(for j = 1 

[2,151 

[2.16] 

Evidently, for/3j~0 the second term in [2.15] can be neglected and the centrifugal analog of [2.14] 
follows. Otherwise, the term contributed by the Coriolis acceleration considerably complicates the 
resulting VRj, as follows: in addition to the obvious radial component, UFtj, an azimuthal component, 
VRj, appears; VR~ and VR2 are directly intercoupled via the Ck terms; vj is coupled to the velocity of 
the embedding fluid, v, via the bj coefficients. 

The scalar equations corresponding to [2.15] are better expressed in dimensionless form upon 
introducing the scalings 

Lrcr-=ro; Vrc,. = Ic, 1/3. ~ro; [2.17] 
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where ro is the outer radius of  the centrifuge. We obtain 

I I -2 i l l  0 2fllAi2 

2ill I -2fllAi2 0 

0 2f12A2i 1 -2fl2 

- 2fl2 A 21 0 2fl2 1 

I URI 

URI 

UR2 

OR2 

where 

2 

l 
\ ~,I | 

\ c'/ I / 
_ \ c 2 /  J 

[2.18] 

1 + %  1 ck 
flj =/~j 1 - - ~  ~Xjk p--~, Ajj, = - -  [2.19] 

The last term in [2.18] reproduces the inertia modification of  the centrifugal field, i.e. because 
of  the u and v components the mixture is not in solid body rotation and the effective force-field 
differs from ll2rP. This difference, however, can be shown to be relatively small when separation 
from solid body rotation is considered and Ee is small. For this reason further progress can be made 
upon discarding the last term in [2.18]. 

Thus, we obtain a standard system for the calculation of  URI , URI , UR2 , UR2 as functions of the 
variables e~ and e2 and the parameters c,, E2, /71 and/72. 

We note that the procedure that led us from [2.9]-[2.10] to the present results can be 
straightforwardly extended to three and more components. 

The insight gained by- -and  implementation of--[2.18] (with discarded last term) are enhanced 
by the following approximation. The coupling coefficients iliA J2 and f12A2~ are small in the range 
of  interest which suggest that [2.18] can be rewritten as the limit n--+oo of the iterations 

r±(, _,q,, ] 1 -2a,l[.~q_ i.(~) \ ( , ] l f l [  -27'A'2vg7'' 
23, 1 jLv~U-[ 2~3, A,2u~i-" 

l -2~ffu~q ~ I-T~ ,,,1\/7,/ 
2fl2 1 j L , , ~ ; j  = 2~=A~,.~,-', [2.20] 

We start with n = 0 and u~R,u = vh~)=  0; this immediately yields 

r(l-Ce).c---;s,(~-~(l+4-fi~) '; [2.21a] u,.O~ = ~ ~ ,<,, \p , , ,  

v~] -z (o) [2.21 b] = -- 2/% u RS- 

The next, n = 1, iteration is straightforward. It can already be observed what is the effect of the 
coupling term: e.g. for q > 0 and c_, > 0 the positive initial radial velocity increases, and the negative 
azimuthal velocity also increases. In the cases reported below, accuracy better than I% was 
obtained on the first, n = i, iteration. The intermediate values in the iterations have, in general, 
no physical meaning. However, in the limiting case e2--+0, i.e. almost a monodispersion of  particles 

IJMF 212--1 
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of type 1, (hence A2~+0) the exact values of URn, VR~ are already given by the n = 0 iteration and 
the exact values of UR2, VR2 by the next step. 

From the theoretical point of view the Stokes drag and viscosity correlation [2.13] can be justified 
only in the limit fli--.0. However, to the best of our knowledge, there is no systematic information 
that can be used to replace [2.13] in a reliable manner for non-small /7/- 

The asymptotic investigations of Childress (1964) and Herron et al. (1975) indicate that, for a 
single particle and /Tj <~ 1, 

d j =  9 v0 
pc {VR + +  R0) + CwR ] + + , , 0 )  + O(/7,)}, 

where A = 15/7xf2, B = 9/5x/2, C = 12/7x~. The corresponding relative velocity "postulate" (in 
the dilute limit e ~ 0 )  is 

VR, = l"lrcj/Tj 1-- 7 1 + 2 A x ~  j 1 + A n/~i 

Schaffinger et al. (1986) performed experiments with (monodispersed) suspensions of 
0.07 </7 < 5 in a sectioned cylindrical centrifuge; the measured separation times compared 
favorably with predictions based on v R obtained with [2.13], especially for/7 ~< 1. On the other hand, 
when [2.22] was used a big discrepancy resulted, see Ungarish (1993, section 7.5). This very 
restricted evidence seems to suggest that [2.18] is, practically, more recommended than [2.22] for 
0 </7 < 1 although there is presently no theoretical explanation for this observation. 

When/Ts >> 1 the flow field around the dispersed particle is certainly dominated by Coriolis effects 
which cause a special pressure distribution, so that the "form drag" becomes much more important 
than the possible viscous contribution [2.13]. For  the "slow" lateral motion of a single particle in 
the limit /Tj--+oo, Stewartson's (1952) analysis predicts 

d s -  2rt 1 Pc ~ [(4UR + gVR)i + (4VR -- 1tUR)0]. [2.23] 

The corresponding relative velocity "postulate" can be obtained by 
[2.11]-[2.12], An indicative approximation is 

¢0) = ~rq(1- ~)(0.40~- 0.490). Rj 

substituting [2.23] in 

[2.24] 

To the best of our knowledge, there is no information on the practical applicability of the last result. 
The force [2.23] was obtained under the assumption that an infinitely long Taylor column is 
attached to the moving particle. This feature is evidently violated in a suspension where the typical 
distance between particles is of the order of their diameter. The relevant issues are yet at the stage 
of preliminary basic research (see Ungarish & Vedensky 1994, where also other important 
references are given). 

An additional difficulty appears in the parametric range of non-small/7: the averaged continuum 
mixture equations are not valid in the Ekman layers on the container's walls. [Note that the ratio 
of the Ekman thickness, x/~0/f2, to the particle radius, a, equals (x//2/3)3-½.] 

Due to these difficulties and considerations we shall restrict our following discussion to small 
and moderately small/Tj and use the "postulate" based on [2.13]. We bear in mind that the results 
must be subjected to experimental verifications. 

3. S O L U T I O N S  

We consider the separation of a bi-dispersion in a straight axisymmetric cylinder. The suspension 
is initially in solid body rotation with the container and well-mixed, i.e. 

u = t , = w = O ,  el=et (0) ,  e2=~2(0) at t = 0 .  [3.1] 

For definiteness, unless stated otherwise, we shall focus attention on the case when both dispersed 
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phases are heavier than the fluid, i.e. q > 0 and c2 > 0. The analysis can be readily modified for 
cases when the dispersed phases are lighter than the fluid, or of opposed buoyancy-signs. 

We use dimensionless variables, obtained by scaling the lengths with ro, velocities with Iq [fl, ~ro 
and the time with l/[q Ifl, fL cf. [2.17]; the scaling factors for the pressure and diffusion stress are 
Pc Iq [fl, (~'~ro) 2 and Pc(lq 13, ~"~ro) 2, respectively. 

3.1. Configuration 1: the infinite cyl&der 
When the axial length H is sufficiently large (as specified later) the influence of  the "horizontal" 

walls z = 0 and z = H can be neglected. The overall expected behavior of the separation process 
is similar to that in the gravity field, see figure 1. 

Ungarish & Greenspan (1984) analyzed such a setup with (j = ~2 by employing the two-fluid 
model, but here we attempt the solution by the mixture model and do not restrict ourselves to 

~I =E2" 

The solution can be obtained by the following steps, see figure !: treatment of  the bidispersion 
sector (a); calculation of  the motion and "jump conditions" on the interfaces (shocks) E,b and Es; 
analysis of the sediment layer; treatment of  the mono-dispersion sector (b). 

In the present infinite-cylinder axisymmetric geometry the solution is considerably facilitated by 
the fact that the flow field variables are independent of z and 0; consequently, the volume 
conservation 2nr SZ~J' fdz = 0 yields 

j .  f = 0 [3.2] 

at any point between the solid walls. 
In sector (a), motivated by the monodispersed solution, we anticipate that the dependent 

variables are of  the form 

% = %(0; P = ½r2~(t); [3.3] 

Vr = rUr(t)i + r~Or(t)O for f =  C, Dj, R or blank (mixture). [3.4] 

In view of  [3.2] the radial component of  the kinematic relationships [AI2]-[AI4] yield 

2 2 

u~ = - y ,  ~j URj, UDj = URj-- Y~ ~j uRj, 
j = l  j = l  

1 2 
~, (Ej- ~g)~j URj. [3.5] U -  1 + ~ j =  

Now the continuity equations [2.7] read 

gj + 2% UDj = 0, j = 1,2; [3.6] 

Shock 
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I 
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Figure 1. Sketch of infinite ("long") cylinder configuration. 
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which, on account of [3.5], can be expressed as 

e~ + 2e~ [(1 - el )URI -- e2 UR2] = 0"~ [3.7] 

(2 + 2e2[(1 -- E2)UR2 -- el Urn] = 0; [3.8] 

the prime denotes the time derivative. We recall that the relative velocity URj = (ug//r) has been 
"postulated" in the previous section. In particular, we can take [2.20], with e = e~ (t) + 82(t ). This 
combination yields an initial value system for the variables el(t), g2( t ) ,  with starting values given 
by [3.1]. The numerical integration is straightforward. 

If the ej(t) and URj(t ) a r e  known the other radial velocities U, Uc and UDj are obtained by simple 
substitution in [3.5]. 

For  further information on the flow field variables in sector (a) we must use the momentum 
balance [2.6]. Assuming that the generalized stress is Newtonian-like, the velocity field of the form 
[3.4] produces V- ~ = 0. After some arrangement we obtain: 
the radial balance, 

~8 
(l +e8)[le, lfl,(U' + U 2 - c o 2 ) -  2co]= - ~  + l~]~-+le, lflt(V'raiff)'i/r; [3.9] 

and the azimuthal momentum balance 

[ (~- .  ej(1 + Ej), , , ]  +e~ / ( l + c ~ ) [ I c , 1 3 , ( ~ ' + 2 U c o ) + 2 U ] = - 4 l e ~ 1 3 ,  _ 1 ~ A '  + ~j)URjWR/ 
j = l  

- - e l / ~ 2 ( !  "~ -~ l ) ( l  "]"/:2)(URI(A)R2-~ - UR2(DRI)]. [3.10] 

It turns out that the radial momentum balance [3.9] is merely a definition of the pressure ~( t ) ;  
since this variable is not of  major interest we did not calculate it. On the other hand, the azimuthal 
momentum balance [3.10] defines the angular velocity of the mixture, co. We recall that U, URj, 
C%j and ej have been determined, hence the last equation can be easily numerically integrated, after 
a slight rearrangement, subject to the initial condition (~(t = 0) = 0. The cumbersome RHS of [3.10] 
is the contribution of the diffusion stress. This term actually turns out to be quite unimportant when 
/3~ ,~ i, in which case the Coriolis term 2U on the LHS dominates the behavior of ~o(t). 

We summarize: employing the "postulate" [2.20] for URj and vRj the flow field variables in the 
bidispersed section (a) are obtained as a solution of a standard initial value system [3.7]-[3.8] and 
[3.10], supplemented by the relationships [3.5] and [3.9]. 

We note that the foregoing solution for the variables in the bidispersion sector (a) is "exact" 
in the sense that all the terms in the governing equations [2.5]-[2.7] have been incorporated. 
Approximations in the physical sense are evidently introduced by the "postulates" concerning 
and VRj, and by the "long" cylinder idealization. We also note that initial conditions on u = rU(t) 
cannot be applied. This indicates that some initial (presumably short) accommodat ion--or  
"relaxation"--process,  not captured by the present formulation takes place, like in the 
monodispersed case (see Ungarish 1993, section 4.2). 

Now we proceed to the calculation of the motion of the kinematic shocks ~ab and Es. The radial 
velocity of the former is simply that of the fastest component in sector (a), 

r~:~,~ = uz. b = tea b Up/,(/), [3.11] 

where k = 1 (usually) or 2 (for some combinations of parameters, see case C in examples below). 
Equation [3.11], subject to the initial condition rz~,, = r~, and in view of [3.6] yields 

rz~,~ (t ) = r i ~ , ~ j  • [3.12] 

The radial velocity of the sediment shock Zs can be obtained from the assumption that the 
sediment is immobile (in the radial direction at least) and the volume fraction of the dispersed phase 
in this layer is the maximal packing fraction eM. Continuity of the dispersed phases over the 
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interface E~ then yields 

and 

eja(ui)i~ -- ux s) = e/s(0 - ux s) f o r j  = 1, 2, [3.13] 

ets + e2s = eM. [3.14] 

Since eja and uDja = r Uoj have been determined, the calculation of ejs and of  Uzs is straightforward. 
In particular, 

Uzs = r~- = -- r~(ela UDI + e2a UDz)/[eM -- (e]~ + e2a)], [3.15] 

subject to the initial condition r~(0) = 1. If aM = constant as assumed here, and in view of [3.6], 
[3.15] can be integrated to the form 

/eM_-[el (0) + e2(O)] ~'/: [3.161 
rxs(t ) = \ e  M -- [ela(t) + e2a(/)]] " 

The thickness and structure of the sediment layer is evidently influenced by the choice of  eM. 
The typical assumption for a sediment of monosized solid spheres, eM = constant ~ 0.65, must be 
reconsidered when the radii ratio a: /a l  is not close to 1. The possibility of smaller particles to fill 
the gaps between the larger ones renders a larger maximal packing fraction. If this eM is known 
in terms of  a2/a~, e~s, ezs the solution of  [3.13]-[3.15] can be modified accordingly, but a simple 
result like [3.16] no longer exists. Such effects on the bidispersed sediment in gravity separation have 
been investigated by Schneider et  al. (1985), who employed a semi-empirical correlation for eM. The 
extension of  that model to the present sediment layer is possible, but the applicability of that 
correlation to centrifugally-dominated packing requires investigations beyond the scope of this 
paper. We also note that the changes in e~ may affect the effective viscosity function #(e) according 
to [2.13]. However, since (1/#)t~#/& M ~ -1.25(e/eM)2 + O[(e/eM) 3] this effect is small for e ~< 0.1, 
say. In these cases the possible increase of eM may practically modify the details of the sediment 
layer, but not the solution in other domains. 

Finally, we consider the sector (b) of monodispersed slower particles of type k left behind by 
the shock •ab" The governing equations are 

j .  ~ = 0; [3.17] 

[ (c~u Ou ~ ) 1  dp g - + - - e r  + E # ( e ) ( V Z v )  • f + IE, I/~,[V" v~fr], ~; [3.18]  

( l + c e )  Ic~lfl~ ~ + u ~ +  + 2 u  =E/~(e)(Wv) ' /7+lE,  I/31[V'rd~rr]'~; [3.19] 

0-t + r[e(1 - e)UR + ej" ~] = 0; [3.20] 

(since only one component is present, the appropriate subscript k is selfunderstood). Here 

E = Vo/~r  2 

is the Ekman number. 
The solution in sector (b) is complicated by the fact that the "initial" conditions are actually 

specified on the moving boundary r = rz~b(t ), via the "jump conditions" across the shock E~b. 
Consequently, e turns out to be a function of t and r, the velocities are not of the form [3.4] and 
the system [3.17]-[3.20] remains a genuine non-linear PDE one. This is in fundamental contrast 
with the (one-dimensional) gravity settling of  a polydispersion where a simple structure is found 
in all the sectors. 

The treatment of sector (b) is, however, facilitated by noticing that an "exact" solution for e(r, t) 
can be obtained as follows. The "postulate" for v R presented in section 2.2 yields 

UR = rfR(e) .  [3.21] 
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Table 1. Parameters in examples; in addition, ~M = 0.65 

Case /~i /7-, E i E: ~l (0) e: (0) 

A 0.1 0,100 0.1 0.025 0.05 0.05 
B 0.1 0.025 0.1 0. l 0.05 0.05 
C 1.0 0.500 0. l 0. l 0.05 0.05 
D 0.1 0,100 0.1 -0.1 0.05 0.05 

In part icular ,  for a single componen t ,  k, [2.20] produces  

TT,-' 
/~(e~ IE, I \ ~ J t  (1 -F e ~ - ~ ( e i J  J [3.221 

Hence  [3.20], in view of  [3.17] and [3.21], can be rewritten as 

8t  + r [~(1 - ~)fR(e)] ~ = - 2 e ( l  - ~)fR(e).  [3.231 

This  equat ion  can be solved by the s tandard  me thod  of  characteristics. Each characteristic line 
(denoted by the subscript  go) " s t a r t s "  at the shock Y'ab with 

= ekb at re, r = r~,~(tl). [3.24] 

The  value ekb is calculated f rom the cont inui ty of  the c o m p o n e n t  k across the shock l£ab, 

ekb (b/Dk b - -  Uza b) = eka (UDk a - -  UZa b) ,  [3.25] 

(again, the subscript  k on the L H S  is actually selfunderstood,  because (b) is a monodispersed  
sector). This can be rewrit ten as 

~kb[(1 - -  E~b)fR(~kb ) - -  g D j a ]  ~- e k a ( S o k  a - -  S D j a )  , [3.26] 

where UDj, is the reduced velocity o f  the fastest c o m p o n e n t  in sector (a). Since the values in the 
R H S  are known at any te, [3.26] becomes a simple non-l inear  equat ion that  defines ~:kb(ti). Starting 
with this value the numerical  integrat ion of  [3.23]-[3.24] yields e [ r , t ; t / )  for t>~ t / ,  
rz,b(tl) ~< r < rz,u(t). 

Next,  the posit ion of  the m i x t u r e - - p u r e  fluid shock 52p can  be calculated as the locus of  the " las t"  
particle that  left the inner cylinder, i.e. 

rip = UDk = r ( l  -- ~)fR(e), [3.27] 

where [3.17], [3.21], [A.13] were used and,  o f  course, the R H S  is taken at r = r zp ( t )  and 
rzp(t = O ) =  r i, the inner radius. 

The foregoing procedure  provides e, the radial velocities, VR and r~p for the monodispersed  sector 
(b) by quite s t ra ight forward calculation. I f  the pressure p and azimuthal  velocity v are required, 
a more  compl ica ted numerical  solution of  the m o m e n t u m  equat ions [3.18]-[3.19] must  be carried 
out. 

We recall that  in obta ining the approx ima t ion  for vR we discarded the last term of  [2.18], in order  
to decouple between vR and v. N o w  it is possible to re-estimate the magni tude  of  the neglected terms 
and, if desired, to "cor rec t "  vR and repeat  the calculation of  the flow-field variables with this 
improved  value. 

3.1.1. Examples .  First, we per fo rmed  compar i sons  with the " two-f luid"  model  results given in 
Ungar ish  & Greenspan  (1984), and found excellent agreement .  We note in passing that  the velocity 
and time scalings differ by factor/ /~ f rom the present  values. 

Here  we present  some addit ional  results obta ined for the combina t ions  or  pa ramete rs  given in 
table 1. In all cases, the postulate  [2.20] for  v~ was used. 

Some results are displayed in figures 2-4 .  For  cases A, B and C we give details o f  ~j, UDj and 
e)~j vs t in the bidispersed sector (a). For  case A we also present  ~js vs t in the sediment region 
adjacent  to sector (a), the mot ion  of  the kinematic  shocks and ~2 vs r (for r, = 0.5). 

Cases A and B are quite similar, quali tat ively and quanti tat ively,  as regarding the separat ion 
process, i.e. the variables UDj and ej, as seen in figures 2(a), (b) and 3(a), (b). The particles of  
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c o m p o n e n t  j = ! are more  buoyant  in case A and larger in case B than o f  c o m p o n e n t  j = 2, so 
that the ratios (~I/E2) in case A and f l l / f l2  (also, a ~ / a ~ )  in case B are equal to 4. It is seen that the 
ratio U D ~ / U D 2  is, roughly,  equal to this factor in both cases. This  is in accordance  with gravity 
settling knowledge .  

The v o l u m e  fraction o f  the more  buoyant  (larger) c o m p o n e n t  j = 1 decays faster than that o f  
the less buoyant  (smaller) c o m p o n e n t  j = 2, see figures 2(b) and 3(b). The "jump" o f  e2 from 
sector (a) to (b) on  the shock  Eab is from a smaller to a larger value in both cases A and B. 
However ,  in the az imuthal  c o m p o n e n t  ~OR2 there are differences between cases A and B as seen 
in figures 2(c) and 3(c), because this variable depends on the particular value o f  f12, as indicated 
by [2.21 b]. 

Figures 2(e) and (f) give informat ion  on  the behavior  o f  the left behind monodispersed  sector 
(b) in a cylinder with inner radius ri = 0.5. In this case the s lower (in radial mot ion )  c o m p o n e n t  
is j = 2. In this monodispersed  sector the v o l u m e  fraction decreases slightly with r. This  radial 
"stratification", p = [1 + Q e ( r ,  t ) ] p o  m a y  be unstable in the centrifugal field, but this topic was  
not  pursued here. Because o f  the abovement ioned  similarity between the radial m o t i o n  in cases A 
and B, figures 2(e) and (f) are, roughly,  also valid for the latter set in the same geometry.  

Case  C, with 3J = 1 and f12 = 0.5, is different from the previous ones  in major  features o f  the 
separation process as reflected by the behavior  o f  the variables UDj and ej displayed in figures 4(a) 
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and (b). The  larger particles, j = 1, are slower and their volume fraction decays slower. In this case 
the c o m p o n e n t  j = 1 is left behind in sector (b). The  " j u m p "  of  e~ f rom sector (a) to (b) on the 
shock Y~ab is f rom a larger to a smaller value. However ,  the az imuthal  mot ion  reflected by OgRj 
remains,  qualitatively,  like in cases A and B. 
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The conclusion is that for small values of flj the main separative motion [i.e. propagation of the 
kinematic shocks E s, Eab and Ep and the profiles ej(t)] depends on the factors (E2/E~) and ([32/fl~) 
in a similar manner. On the other hand, for flj > 0.5 (say) some peculiar influences of the Coriolis 
acceleration show up and the dependency on (fl2/fll) is not the same as before. In particular, larger 
particles may settle slower than the smaller ones, in which case sector (b) contains the larger 
particles, in contrast with gravity settling configurations. The same features for larger flj were 
detected with the two-fluid model analysis by Ungarish & Greenspan (1984). The interpretation 
of  this peculiar influence of flj and its associated physical uncertainties are presented in Ungarish 
[1993, section 4.2.2]. Evidently, experimental verifications are necessary and it is our hope that the 
present methodology and solutions will stimulate conclusive experiments in this direction. 

In case D the bidispersion contains both light and heavy particles. As shown in figure 5, the 
dispersed phases j = 1 and j = 2, with Cl = -E2, move in opposite directions with roughly equal 
velocities. Consequently, the sector (a) is embedded now in two monodispersed regions, (b - 1) of 
the light particles and (b - h) of  the heavy particles, with two corresponding kinematic shocks Eab_ 
and Eab h, and contracts quickly (as compared to case A). In the bidispersed sector e~ decreases 
while ~2 increases; the total e increases. 

In the gravity settling of heavy and light particles sector (a) is strongly unstable when 
el + e2 = e~(0) + e2(0) > 0.16 (typically), see Fessas & Weiland (1984). In the present centrifugal 
counterpart although e~ (0) + e2 (0) = 0.1 the critical value e = 0.16 is, nevertheless, reached at t ~ 1. 
If the inner radius, r~, is smaller than 0.25, separation of sector (a) is not completed yet at this time, 
and an interesting question is if the instability fingering shows up. Thus, the present results suggest 
an adequate experimental verification. 

3.2. Configuration 2: the finite cylinder 

Consider the system sketched in figure 6. It is known from the monodispersed analysis (see 
Ungarish 1993, sect ion 5) that on the endplates z = 0, H viscous shear layers of  Ekman type appear. 
They influence mainly the azimuthal velocity, ~ ,  during the separation process. 

A corresponding investigation for a bidispersion is performed below. Comparing with the 
preceding infinite cylinder case, we must stress that now: (a) The facilitating condition j • i = 0 is 
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Figure  6. Sketch of  finite cyl inder  conf igurat ion.  

no longer valid, because the Ekman layers on the endplates introduce and support a radial volume 
transport, as seen below. (b) The analysis is restricted to flj,~ 1; otherwise the thickness of the 
Ekman layer, ~(v0/f~) ~/2, cannot encompass many particles of diameter 2a/ and the averaged 
approach formulation becomes invalid in these critical shear layers. 

An important parameter in this configuration is the Ekman number, 

E -  v0 [3.28] 
f~r2o ' 

assumed very small, as typical of practical centrifuges. 
We separate the flow field into thin viscous Ekman layers (dimensionless thickness --~ E v2) and 

an inviscid "core" in the axial region 0 + ~< z ~< H - .  In the latter we anticipate 

( 1'2 H 2z -; 
~j = ei(t); p = ½rZ~(t) + E / ~- 5a(t) ~ - 1 [3.29] 

vf= rU/(t)# + re)#(t) + EI/2W# ~ - 1 ~; [3.30] 

for . / '= C, R, Dj or blank. The axial velocity component, cf. [3.3] [3.4], is introduced by the Ekman 
layer transport and is therefore assumed proportional to E ~a. However, no axial separation effect 
is present so WR = 0 according to the postulate [2.18]. 

The governing equations [2.5]-[2.8] in the core region read now: global continuity, 

1 c3 E 1'2 
r ~r r(j" P) ÷ 2 ~ -  W = 0; [3.31] 

global momentum balance, 

(a) radial component given by [3.9]; 
(b) azimuthal component given by [3.10] which we repeat here, 

(1 +ce)[Iqlfl,(~o'+Rgco)+2g]= -41ctlfl, 1 ej(1 ÷ci)URIfDR! 
j 1 +ce  

--eIe2(I+q)(I+c2)(URI~OR2+URzcOR,); [3.32] 

(C) axial component 

[ E,/2 2 W21= _£,o; [3.33] (1 + ce) Iq Ifll W' + H 
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dispersed phases continuity: 

e'j + 2e, (i - e, )URj -- e2 UR2 + ~ - -  W = 0; [3.341 

e; + 2e2 (1 -- e2)UR2 -- ej UR, + ~ -  W = 0. [3.351 

The matching of the foregoing "core" to the boundary conditions on the endplates via the 
Ekman layers produces the "Ekman suction" effect 

,/2 ~ 1 1  d 
w(z = 0 +) = E x/p(e) -~  r-~rrrV(z = 0+), [3.36] 

where p(e) was used to account for the effective viscosity in the shear region. In view of [3.30] we 
obtain from [3.36] the correlation 

W(t )  = - ~ co(t). [3.37] 

This actually closes the system for the calculation of the variables in the core, for a given 
"postulate" for URj, coRj" TO proceed, we integrate [3.31] and substitute [3.37] to obtain 

El~2 El~2 
J ' f -  H Wr = H x/l~(e)cor. [3.38] 

With this expression and the kinematic relationships [A. 12]-[A. 14] we can formally define UDj, Uc 
and U as functions of  ej and co; the results are similar to [3.5] plus the term [3.38]. In particular, 

E I/2 1 2 
U = ~ Px/-~ co + - -  ~ (Ej - Ee)ejUgj. [3.39] 

1 +Eej=~ 

We observe that: (a) equations [3.34]-[3.35], [3.32], [3.37]-[3.39] form an independent standard 
initial value system for ej, U, co and W; (b) the radial and axial momentum equations are merely 
definitions of the pressure functions ~ ( t )  and LP(t). 

The solution in the bidispersed core is, again, "exact"-- l ike in the "long" cylinder configuration. 
Here the approximations are made in the Ekman suction correlation [3.37] and, again, in the 
postulate for YR. 

Comparing [3.39] to [3.5] we conclude that the presence of  the Ekman layer transport causes a 
decrease of the radial velocity U (co is negative). 

To gain additional insight on the influence of the endcaps let us consider the case Iql ~ l (and 
recall that also flj ,~ 1). The leading azimuthal momentum balance [3.32] can be approximated now 
by IEll/~co' + 2U = 0, which, upon substitution of [3.39], can be expressed as 

co '+  22, x//~-(e)co = - 2 ~ j ~ ,  ~-~ - ejUgj, [3.40] 

where 

E l l  2 

2, - Ic, lfl, H" [3.41] 

The approximation [3.40] clearly shows that the Ekman layers have a major influence on the 
angular velocity of the mixture (in the rotating system). When 2, is not small co is dampened by 
the viscous shear on the endplates, and the " long"  cylinder case discussed in the foregoing section 
is recovered for 2~ ,~ 1. 

In the monodispersion case the RHS of [3.40] equals fl -~(c/[E [)e', but here the connection between 
co and e is less explicit. As for orders of magnitude, we can estimate co ~ e(O)/fl~ for small and 
moderate 2~, and co ~ e(O)/fll 2, for large 21 (i.e. "strong" Ekman layers). With these outcomes, the 
relative contribution of the (EJ/2/H)W terms in [3.34]-[3.35] is O (c~ 2,) for small and moderate ).~ 
and O(EI) for large 2j. This indicates that the Ekman layers have little influence on the behavior 
of ej(t), i.e. the "long" cylinder solution for ej(t) is a very good approximation for a finite cylinder. 
The calculations confirm this estimate. 
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3.2.1. Examples. We consider the influence of  the endplates in cases A and B of  table I. The 
variables ej(t), UDj(t), CORj(t) and co(t) were calculated for 2~ = 0, 0.5, 1, 2, 3 for 0 ~< t ~< 3. 

With the exception of  co(t), the dependency on 2, o f  these variables was found to be very weak, 
typically in the third significant digit. 

On the other  hand,  the influence of  21 on the angular  velocity of  the mixture,  co (t), is pronounced,  
see figure 7. The result o f  the approx ima t ion  [3.40] is compared  with the "exac t"  result by [3.32] 
in figure 8 for case A and 2, = 1; the quali tat ive agreement  is good,  but  the quant i ta t ive 
compat ibi l i ty  becomes poor  after the peak  of  co is reached. Similar behavior  was noticed for other  
values of  2~ and in case B. This confirms that  basically co in the core is induced by the separat ion 
between the phases and dampened  by the E k m a n  layers, as seen in [3.40], and substantiates the 
relevance of  the dimensionless pa rame te r  2j. 

4. C O N C L U D I N G  R E M A R K S  

The "mix ture  mode l "  was extended for t rea tment  of  rotat ing polydispersed suspensions, and 
appl icat ions have been illustrated here for bidispersions in " long"  and finite cylinders. It is expected 
that  this model  will enhance pert inent  research in addit ional  configurations,  in order  to close the 
gap of  knowledge between gravity and centrifugal systems. Novel  effects, with no counte rpar t  in 
gravity settling, seem to be "h idden"  in the range of  non-small  values of  fl and e (say, /~ > 0.5, 

> 0.1). Here,  however,  unsolved problems of  drag and rheology make  the analysis unreliable 
unless backed by stringent experiments.  

For  very small values of/3j the results are closer to the " in tu i t ion"  provided by gravity settling 
and the model  is more  reliable. It is therefore anticipated that  in this paramet r ic  range more  
centrifugal counterpar t s  o f  known results in gravity polydispersed configurat ions will be soon 
confirmed and extended both  analytically and experimentally.  
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Define: 

Hence 

A P P E N D I X  A 

Some Kinematic Relationships 

8 = e  I + c 2 ;  [ A I ]  

~, = (PD, - Pc ) /Pc ;  ~2 = ( P D 2  - -  Pc) /Pc ;  ( = (e1~1 + ~2c2)/~; [ A 2 ]  

P = eIPDI + e2PD2 + (1 - -  e )Pc ;  [ A 3 ]  

VRI = VDI - -  VC; VR2 = VD_~ --  VC; [ A 4 ]  

pv = PDISIYDI -'[- PD282¥D2 -[- (1 -- 8)pcv c 

= pVC -~- 81PDI YRI -'l- 82PD2¥R2 • [ A S ]  

1 
V = ¥C -~- -- (81PDIVRI + 82PD2VR2); [A6] 

P 
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1 2 
VDi = v + VRi- p , ~  eipDjV.i. 

Using [A4] and [A5] we express 

PDI VDI -- pv = PDI (Vc -I- VRI ) -- pv = PDI YRI "q- PDI VC -- pv, 

and eliminate vc by [A6], rearrange and use [A2] to obtain 

_ _  1 + ~  
1 [pD, vD, - pv ]  = ~ [( l  - ~ + ~2e2)VR, -- e2(1 + ~2)VR2] + (C~ -- Ce)V. 

Pc 

Similarly, 

1 + c 2  1 [ p m v m _ p v  ] ~ [ ( l - - e 2 + q e l ) V R 2 - - e l ( l + ~ l ) v m ] + ( C ~ - - c e ) v .  
Pc 

The volume flux is defined by 

j ~--- E:I VDi + e2UD2 + ( l  - -  e)V C . 

Combining the last equation with [A1] and [A4] we get 
2 

VC = J - -  E ~jVRj ' 
/=1 

and 
2 

VD/= j -t- VRj -- ~ ~'jVRj" 
j = l  

Combining [A12] and [A6] we obtain 

1 2 
v = J +  l ~ - S j  = 

[A71 

[A8] 

[A9] 

[Al0] 

[All] 

[AI2] 

[AI3] 

[Al4] 

A P P E N D I X  B 

The Diffusion Stress 

The momentum flux in the bidispersion is 

J = ~ giPDiVDiVDi-t - (1 -- e)pcVcVc, 
j = l  

and define 

Letting 

J = pVV - -  ~dil'f 

[Bl] 

[B2] 

[B31 W D i :  VD/ - -V ,  W C : V C -  V, 

and substituting in [B1] we obtain, after some arrangements, 

J = p v v + { L j = ,  ~jpDjWDjWDj+(I--~)WcWc}+Va+av, [B4] 

where 

a =  £ ~jpDjWDj+(I--e)pCWc = £ ejpDjVD,+(I--e)pCVc-- ejPD,+( I - e ) p c  V=0,  [B5] 
= 1  j=~ i = l  

recalling [A3]-[A5]. 
By [A6]-[A7] 

1 2 l 
WD/ --  E CJPDiVRi 7t- VRj ' Wc --  ~ £JpDjVRj" [B6] 

P/=I P/=l 

Combining [B2]-[B6] we obtain [2.8]. 


